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It is well known [I-3] that the nonuniformity of the density of a plasma strongly af- 
fects the character of the interaction of fast-electron beams with it. Until recently, 
because of the problem of heating a laboratory plasma, primarily flows moving in the direc- 
tion of increasing plasma density were studied. Here the relaxation of the beam is accom- 
panied by the appearance of accelerated electrons [3]. 

The case of a beam moving in the direction of decreasing density of the surrounding 
plasma is just as interesting. A typical example of this physical situation is the motion 
of electrons accelerated in the region of a solar flare into the outer layers of the coronal 
plasma. Such an electron flow generates Langmuir waves in the plasma (plasmons), which 
partially transform into electromagnetic waves and are observed in the sporadic radiation 
from the sun in the form of bursts of type III [4]. The qualitative features of the beam- 
plasma interaction with the beam moving in the direction of decreasing plasma density were 
pointed out in [3-6]. In this case, unlike a beam in a uniform plasma or in a plasma whose 
density grows along the beam, the phase velocity of plasmons resonant with the beam decrea- 
ses as the beam propagates into the less dense plasma. In the process, they fall out of 
resonance with the beam, which retards the process of beam relaxation - the transfer of 
beam energy to plasma waves. 

In this paper we analyze the spatial evolution of the distribution function of a sta- 
tionary electron beam and the spectrum of plasma waves in a plasma whose density decreases 
along the beam based on one-dimensional equations describing the spatial evolution of the 
limits of the quasilinear plateau [i, 7]. It is shown that if in such a plasma the modulus 
of the density gradient also decreases in the direction of motion of the beam, then the 
unstable section of the distribution function, responsible for the generation of plasmons, 
breaks down at significantly larger distances than in a uniform plasma. The beam relaxation 
length, understood in this sense, is comparable to the characteristic size of the nonuni- 
formity [i, 8, 9]. 

In addition, the plasmon spectrum changes significantly. The spectral density of the 
plasmons does not decrease, as it does in a uniform plasma, but rather increases as the 
wavelength decreases. For this reason Landau damping, as a result of which a maximum forms 
in the plasmon spectrum in the region of small wavelengths, must be taken into account. 

i. Evolution of the Distribution Function of the Beam. For stationary injection of 
a beam into a nonuniform plasma the spatial evolution of the beam and the plasma waves exci- 
ted by it is described by the system of quasilinear equations [1-3]: 

( af) (1.1) S~2e ~ a - - I  W h ~  ; 
U ~X m 2 OV \ u 

v Ox" + T - ~  7 av ~(~)Wkv2 ~ + ~ "  

Here  Wk(X, v )  i s  t h e  s p e c t r a l  e n e r g y  d e n s i t y  o f  t h e  p l a s m o n s ;  f ( x ,  v )  i s  t h e  e l e c t r o n  d i s -  
t r i b u t i o n  f u n c t i o n  o f  t h e  beam; m2 = 4 v n ( x ) e a / m ;  n ( x )  i s  t h e  p l a s m a  d e n s i t y ;  ~z = mp2 + 

3k2vT2; k i s  t h e  wave v e c t o r  o f  a p l a s m o n  in  r e s o n a n c e  w i t h  t h e  beam e l e c t r o n s ;  v = m/k;  

F = (n/C~vT)exp(-v2/2VT 2) i s  t h e  e l e c t r o n  d i s t r i b u t i o n  f u n c t i o n  f o r  t h e  main  p l a s m a  w i t h  

t e m p e r a t u r e  T; and ,  v T = r  t h e  t h e r m a l  v e l o c i t y .  The s t a r t i n g  beam d i s t r i b u t i o n  
f u n c t i o n  f ( O ,  v)  = f 0 ( v )  and t h e  v a r i a t i o n  o f  t h e  p l a s m a  d e n s i t y  n ( x )  : n 0 v ( x )  a r e  assumed  
t o  be  g i v e n .  
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It is assumed that the velocity spread Av in the beam is large enough for a kinetic 
instability to develop: 

(n'/n) 1/~ << Au/vo, (hV/Uo) 2 << t 

(n' is the beam density and v 0 is the average beam velocity). 

As a result of the quasilinear interaction of a one-dimensional beam with a uniform 
plasma, as is well known [i, 4], a plateau f = fn(X) forms in the distribution function 
f(x, v) (the section with 8f/Bv = 0 for v1(x) < v < v2(x)). The height of the plateau in 
the stationary case is determined by the law of conservation of the particle flux: 

v,z(x) 

/~ (x) 2 j U/o (u) du. 
', 2 ( i  .3) v~ (~) -- v i (x) '~i(~) 

This enables describing the evolution of the distribution function based on the equations 
for the evolution of the boundaries of the plateau vz(x) and v2(x). It is obvious that 
a spectrum of plasma waves Wk(x, v) is excited in the same interval of phase velocities, 
while outside it W k = WkT (the spectrum of thermal noise in the plasma) and f = f0(v). 

In a nonuniform plasma, as shown qualitatively in [i], beam relaxation is possible 
with a relatively weak nonuniformity. An analogous inequality, derived in the Appendix 
based on an analysis of the relaxation process (A.II), can be written in the form 

I dv I~-~-~x I~(ToAU/A uo)(vT/uo)2' (1.4) 

where Y0 = n'mpV03/[n0(Av)2vT 2] is the spatial increment of the beam ins tab i l i t y  in a uni- 
form plasma; h is the coulomb logarithm [ i ] .  Part of the distr ibut ion function of the beam 
in the process of relaxation has, as in a uniform plasma [i0], the form of a plateau. 

Near the boundaries of the plateau the distribution function is described by the rela- 
tions [see (A.4)] [Ii] 

/ - - / (VL2) ~ dz h3,2 d---f- In wh T. ( 1 . 5 )  

To obtain the equations of evolution of the plateau boundaries the jumps in the distribution 
function at the limits fn-f0(vl,2)must be substituted into the left side of (1.5). Assum- 
ing in(Wk/WkT) = A " const, we have 

(3v~/v~) dv /d  x = --  (4n2e2/moA) [/n (x) - - / o  (v~)] - -  (l/2) ] dv/dx J; 

(3u~/v~) dv2/dx = (4~e~/mmA) [/o (v2) - -  ~ (x)] - -  (t/2) l dv/dx [. 

Near the lower limit v - v I it can be assumed that fn ~ n'/v0 >> f0(vz ) 
solution of (1.6) can be written as 

= + (4/3 D (x) A A) + 1 - (x)] '< 

I t  i s  o b v i o u s  t h a t  f o r  s u f f i c i e n t l y  l a r g e  d i s t a n c e s  x ~ L 0 (L 0 = n 0 b v h v T 2 / ( n ' ~ v 0  

r e l a x a t i o n  l e n g t h  i n  a u n i f o r m  p l a s m a )  v 1 ~ 1 / ~ x ,  a s  i n  a u n i f o r m  p l a s m a  [1 ,  8 ] .  

The e v o l u t i o n  o f  t h e  u p p e r  l i m i t  v 2 ( x )  d e p e n d s  s t r o n g l y  on t h e  g r a d i e n t  o f  t h e  p l a s m a  
d e n s i t y .  The f i r s t  t e r m  ( 1 . 7 )  i s  r e s p o n s i b l e  f o r  t h e  g e n e r a t i o n  o f  p l a s m a  waves  a t  t h e  
l i m i t  o f  t h e  p l a t e a u  and  e x p a n s i o n  o f  t h e  p l a t e a u  owing  t o  d i f f u s i o n ,  w h i l e  t h e  s e c o n d  t e r m  
d e s c r i b e s  t h e  p r o c e s s  o f  t h e s e  w a v e s  f a l l i n g  o u t  o f  r e s o n a n c e  w i t h  t h e  beam,  o w i n g  t o  w h i c h  
d v 2 / d x  a l s o  d e c r e a s e s .  

Figure 1 shows qualitatively the evolution of the distribution function: slowing down 
of the relaxation of the "peak" in the starting distribution function f0 and formation of 
the plateau fn with the limits v I and v 2 (vz ~ and v2 ~ are the boundaries of the plateau 
in a uniform plasma). 

( 1 . 6 )  

( 1 . 7 )  

[i], and the 

(1.8) 

2) is the 
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Fig. i F i g .  2 

At large distances (x Z L 0) the analysis can be confined to the evolution of the top 

limit, since at the bottom limit the velocities are so low that vi 2 ~ v2 2 ~ v0 2 As a 
result of this inequality Eq. (1.7) for the top limit at large distances has the form 

(3v~,/v~) d v J d x  = B(I) (vf) - -  (~/2) l dv /dx  I, (1 .9)  

where 

B - ~ r (v) = / o  (v) - 2 ~ Uio (u) du. ( 1 . 1 0 )  
AmoJ ' 7 

o 

The solution of Eq. (1.9) describes the transfer of electron energy to plasmons only 
in the case of expansion of the plateau towards high velocities, when dv2/dx > O, i.e., 
when the condition ld~/dx[ ~ 2B@(v 2) holds, which is qualitatively analogous to (1.4). We 
shall seek the solution of (1.9) near the root of its right side: 

v~(x) = V(x) + 4x), l~/Vl << l, (1.11) 

where V(X) is determined by the equation 

Idv/dx[ - -  2 B ~ ( V ( x ) )  - -  O. ( 1 . 1 2 )  

We shall first study the case of a constant density gradient d~/dx = -~, when (1.12) 
has the root v 0 ~ V = Vc(s) < Vm, whose position does not depend on x. Then the solution 
of (1.9) can be written in the form of an inverse function: 

x = 6v~ ~ u-3du/[2B(1) (u) - -  e]. 
v O 

U s i n g  t h e  e x p a n s i o n  ( 1 . 1 1 )  w i t h  V ( x )  = Vc ,  f r o m  ( 1 . 9 )  we f i n d  v 2 ( x )  ~ Y c - s o e x p ( - x /  
L 1 ) .  H e r e  s o = V c - v 0, and  t h e  c h a r a c t e r i s t i c  s c a l e  L 1 o f  t h e  e v o l u t i o n  o f  v f ( x )  i s  t h e  

same as in a uniform plasma: L z = (3VTf/VcS)/IBd@/dvlv=Yc ~ L 0. 

Thus as the beam propagates into a plasma with a linearly decreasing density only some 
of the beam electrons in the velocity interval v 0 - &v ~ v ~ V c give up energy to plasmon 
generation. The remaining electrons with v > V c do not interact with the plasma even at 
larger distances (x >> L0). Such "partial" relaxation can be regarded as the first small- 
scale stage of quasilinear interaction of the beam with a nonuniform plasma, when the grad- 
ient of the nonuniformity is assumed to be constant. In the general case (d~/dx # const) 
the evolution depends on the character of the change in the gradient of the plasma density. 

Figure 2 shows schematically the graphical solution of Eq. (1.12), i.e., the determina- 
tion of V 3 = V(x 3) for the characteristic argument x 3. 

For s(x) from (1.9) and (i.ii) we obtain with accuracy up to Is/Vl ~ 1 

ds V a ( d * )  t df,/dx 2 ( 1 . 1 3 )  
dx s B ~  ----~-v v=v 2 (Bd~/dv)v=V" 
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The solution of (1.13) together with (1.12) describes the evolution of v2(x): 

~ (d"v/dz ~) dz 'dg  3v~ \ dv l ,=v(y)j"  V 2 (X) = V (x) -5 2B exp B (1.14) 

Since the gradient of the plasma density decreases in a power-law fashion [12], it follows 
from (i.ii) and (1.14) that for x m L 0 

3v2 d2v/dx 2 
:. 

v,  (x) = V (x) - -  2B,.V ~ (x) (d*/d~)~=v(x) (1.15) 

Analogously, the dependence ~(x) can also be determined at quite large distances (x 
L0), when the top limit of the plateau v2(x) approaches v m - a root of the function ~(v). 
It can be shown that for continuous nonnegative distribution functions f0(v), which decrease 
as v + = more raDidly than v -2 (in particular, for a Gaussian distribution or a power-law 
distribution v -X with X > 2), the function ~(v) in (i.i0) has a unique root ~(Vm) = 0, and 
in addition (d#/dv)v=Vm = (df/dv)v=Vm. From (1,12) and (1.15) we now find 

V (x) _~ v,. -- t dv /dx l / (2Bd/o /du) ,= ,m;  (1.16) 

3v~.di'v/dx 2 
V,. (X) ~ V,~ - -  I dv /dx  [ / ( 2 B  ] d/o/dv ],=,m) 4yam B2 (dlo/dV)2=, m" ( 1 . 1 7  ) 

The e v o l u t i o n  o f  v 2 ( x )  d e t e r m i n e s  t h e  r e l a x a t i o n  l e n g t h  in  a n o n u n i f o r m  p l a sma :  [ ( v  2 - 
Vm)/(dv=/dx) I ~ [ ( d v / d x ) / ( d 2 v / d x 2 ) [  ~ Ln. 

Thus u n l i k e  a p lasma  w i t h  a c o n s t a n t  d e n s i t y  g r a d i e n t  i n  t h e  c a s e  u n d e r  s t u d y  t h e  "un-  
p e r t u r b e d  p a r t "  o f  t h e  d i s t r i b u t i o n  f u n c t i o n  o f  t h e  e l e c t r o n s  in  t h e  beam f o r  v > v 2 ( x )  
d e c r e a s e s  on s c a l e s  o f  t h e  o r d e r  o f  t h e  l e n g t h  o f  t h e  n o n u n i f o r m i t y  L n >> L o. G e n e r a t i o n  
o f  p lasma  waves c o n t i n u e s  on t h e  same s c a l e s .  Thus t h e  l a r g e - s c a l e  e v o l u t i o n  o f  t h e  d i s -  
t r i b u t i o n  function of the beam is determined completely by the character of the nonuniform- 
ity. For example, in the plasma of the solar corona a slow change in the gradient of the 
density at characteristic distances of the order of several solar radii R increases the 
relaxation length of the beam up to a scale of the order of the length of the nonuniform- 
ity L n ~ R [8]. 

2. Spectrum of Plasma Waves. The behavior of the distribution function and the limits 
of the plateau in a nonuniform plasma studied above permits studying the spatial evolution 
of the spectral energy density of the plasma waves W k [8, ii]. 

We shall study the dependence Wk(x, v) in the region of high phase velocities VT 2 << 
v 2, when Landau damping is negligibly small. As the plateau is approached we find from 
(I.I) and (1.2) in the velocity interval v I < v < v 2 the following linear differential 
equation for Wk(x, v): 

v Ox 2 "~x] Ov 2o~ dx ( v i - -  vl 2(tiT,)). (2.1) 

The method of characteristics permits writing the solution of (2.1) in the form of an in- 
tegral 

Wh (x, v) = ~ o ~  dzv 6 (z, V) dl,~ ~ (~) 1 - -  WhT, v~ (z, Vi + ( 2 . 2 )  %(V) 

where the characteristic is given by the expression v(x, V) = V//I + (V2/3VT2)(I - v(x)). 
For W k ~ WkT the additive constant can be neglected, and the lower limit x0(V) is the solu- 
tion of the equation v(x 0, V) = v2(x0). 

The analytical dependence Wk(x) can also be obtained only at sufficiently large dis- 
tances (at the final stage of relaxation), when vl 2 << v2 2, while the top limit is close 
to the limiting value v 2 " v m. Under these conditions from (1.3) and (1.16) we obtain 
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dfn 2___ (123 (V2) dr2 I dv/dx I d2v/d x2 
d-'7 "~ v 2 dx -- 2B~vm [ dfo/dv lv=v m " 

(2.3) 

Substituting (2.3) into (2.2) and assuming that d2v/dz 2 is nearly constant in the in- 
terval x 0 < z < x, we obtain 

Wl, (x, v) ~ ( 2 . 4 )  

We note that for a power-law model v(X)Ix>>L0 ~ x-~(~ > 0) the same dependence Wk(x , v) 

is also obtained to within a factor of the order of unity. As one can see from (2.4), in 
the presence of a nonuniformity the spectral energy density of the plasmons does not de- 
crease, as in a uniform plasma, but rather, because plasmons are carried off into the region 
of low velocities, it increases as the phase velocity decreases (Fig. 3). In the region 
of low phase velocities v 2 ~ VT 2 the term on the right side of (2.1) responsible for Landau 
damping must be included. The spectral density in this limiting case can be represented 
with accuracy up to rD/L 0 ~ 1 (r D = VT/m0) in the form 

AUmn~ v~'ldv/dx' d2v va ( v2 ) 
Wk(x ,~  = ~o~tdlo/d~l~=~ j~ @~p ~ .  (2.5) 

As follows from (2.4) and (2.5), because of damping the spectrum of plasma waves in a 

nonuniform plasma has a maximum at the phase velocity Vext ~ ~2vrlnl/2[(v~'l 4 ~ ] 
[\%7 %{d~dz I ~VT 

unlike the spectrum in a uniform plasma, where Vex t ~ v 0" In addition, the maximum value 
Wk(x, Vex t) is a factor of (v0/vT)2 smaller than when the nonuniformity is neglected, and 
decreases with distance in proportion to the decrease in the modulus of the density gradient 
Id /dxl 

We shall now consider the limits of applicability of the solutions (2.4) and (2.5) 
for the spectrum W k. The spectrum is valid when the nonuniformity (1.4) is comparatively 
weak. In the Appendix this inequality is derived as a condition of applicability of the 
plateau approximation. In addition, the plasma nonuniformity cannot be close to linear~ 
as the restriction (A.13) on da~/dx 2 shows. The solution found cannot be regarded as a 
correction to the solution in a uniform plasma. For a power-law dependence for v(x) we 
obtain from (A.13) 

•  d l>> (2 6) 
v 1 fix ~ Lno -X-b- V Whr~/Amv~n'. 

In the plasma of the solar corona [12] with ~0 ~ 109 sec-1, VT ~ 106 m/see, for a beam 
of electrons with v 0 ~ l0 s m/sec, Av ~ l0 s m/sec it follows from (1.4) and (2.6) that 

tO-l(n'/no):m -1 << Idv/dx] << tO(n'/no) m- ~ (2.7)  

Thus the gradient of the nonuniformity in the lower corona Idv/dxl ~ 10 -8 m -z (it is 
an order of magnitude higher during flares) satisfies the criterion (2.7) for beams with 
10 -9 < n'/n 0 < 10 -7 , so that the nonuniformity plays a significant role in the formation 
of the plasmon spectrum. 

Appendix. The effect of plasmons falling out of resonance with the beam in a nonuni- 
form plasma is most strongly manifested in velocity intervals where the slope of the dis- 
tribution function O//du and the gain of plasma waves are maximum. In this connection, 
in order to evaluate the plasma nonuniformity for which the plateau approximation can be 
employed, we shall study the system of quasilinear equations (I.i) near the plateau limits~ 
where the distribution function varies most rapidly. 

We write (i.i) and (1.2) in terms of dimensionless variables 

o~ ~, o~ ~ - g - ~ / , ~  + u t ~ - g - ; ~ = u w - ~ .  (A.I) 

763 



Fig. 3 

-O 

(2) 2 . 2 d op 
H e r e  G = ~ V o f / n ' ;  ~ -- x v 0 ~ n ' ~ / ( 3 v r ~ n 0 v 0 ) ;  u = v / v 0 ;  w ; 6 ~ V T ~ W k / ( m v o ~ n ' ) ;  ~ ; ( ~ 0 / 6 ~ ) ~  7 " 

Near  t h e  p l a t e a u  l i m i t s  we t r a n s f o r m  i n t o  a c o o r d i n a t e  s y s t e m  moving  t o g e t h e r  w i t h  
t h e  l i m i t  ~ = u - u z . ~ ( u ~ .  2 = v ~ . 2 / v o ) .  Near  t h e  l i m i t s  ]HI << u~.~  t h e  fo rm o f  G(~,  ~ ) ,  
w(r  ~) r e m a i n s  v i r t u a l l y  u n c h a n g e d  in  t h e  p r o c e s s  o f  s p a t i a l  e v o l u t i o n :  

[ duL.,, #G , ] [dul.2 
I~--~'l << d~ 0'1 I O'v~,<<' d~ Ow .0~1 ( A . 2 )  

T a k i n g  i n t o  a c c o u n t  ( A . 2 ) ,  t h e  s y s t e m  ( A . 1 )  a s s u m e s  t h e  f o r m  

G 11,2 dUl'2 W~] = O, 

o [ w OG G ~ on ~ a~l + a~ = 0  ( h .  3 ) 
Ul,2. 

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  G(~,  0) = G o ( u z . 2 ) ,  w(~,  0) = wo, where  G O = v v o f 0 / n ' ,  w o = 
6~vT2WkT/mv0 sn' , f0 is the unperturbed distribution function of the beam, and WkT is the 

spectral density of thermal noise in the plasma. 

We obtain the solution of Eqs. (A.3) analogously [i0] in the implicit form 

( ~ ' ) ~ (w/~o), a (~, n) - ao (u~ ~) = - ~ (~) 1. (~/~o) 
du 1 

~1 = - -  lvo/u~,~ T 

( ; ) 1 du1,2 
l i ( z ) =  dt/lnt, 6(~) ~ d~ ~ . ( A . 6 )  

0 Ui'2 

For In(w/w 0) m i, with logarithmic accuracy we obtain from (A.4) 

w ~ Wo(~l/~h..,) In (~/~1,2), 

G - -  Go(u~,2) ~ - -6(~)In  [(n/~h,2)in (q/~h,2)] 

i]1,2 /[  '2 dUl,2 ~ 
= __ W o / V , . , T )  ]. 

(A.5) 

The expressions (A.5) are applicable, as one can see, only for D/nl.2 m i. In the case 
w - w 0 ~ w 0, when ~/ni.2 ~ i, the solution (A.4) assumes the form 

w - -  wo ~ wo(exp (q/ql,~) - -  i), G --Go(u1,2) ~ --6(~)(exp(q~l,2) . 1). ( A . 6 )  

One can  s e e  f rom ( A . 5 )  and ( A . 6 )  t h a t  t h e  d i s t r i b u t i o n  f u n c t i o n  G(~,  q)  v a r i e s  r a p i d l y  in  
the interval IN[ ~ [NI.2[, while outside this interval G($, q) varies slowly (logarith-. 
mica!ly ). Thus its behavior near the limits can indeed be approximated by a jump. 

Let us examine the applicability of the solutions obtained near the bottom (D = NI > 
0) and top (D = N= < 0) limits separately, since the nonuniformity affects them differently. 
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It follows from (A.4) that for D < 0 a necessary condition for the existence of the bottom 
limit is the inequality 6 < 0, i.e., 

The function ui($) was found above [see (1.8)]: 

= + ( C,UA + - -  

(uo V o/Vo l, 7 " avordn'). = = VoO)~/6vro)', G,~ = 
(A.8) 

Substituting (A.8) into (A.7) we find in dimensional variables 

Idv /dx l  < (?oAe/voA)(vT/vo)" .  (A. 9) 

The conditions of applicability of Eqs. (A.3) follow from (A.2) in the form lql.21 << 
ul. 2, whence for the lower limit we have 

w 0 << u~[ d u / d ~  !. (A. I0) 

Using (A.8)-(A.10) we obtain the inequality 

% 1 + (Lo/~o) I ~v/dx 1 
>> = (A.  11)  o)L o 1 + x lL  o + (I - -  v (x))l~) o 

from which for small x ~ L 0 ~ n0vT2hv/n'v02~ there follows the following restriction on 
the parameters of the beam and plasma: 

p r 3 

t'o/~~ >> ~ m n  Uo (A. 12) 

[ f o r  t h e  c h a r a c t e r i s t i c  p a r a m e t e r s  o f  t h e  p lasma  o f  t h e  s o l a r  c o r o n a  (A.12)  h o l d s ] .  At 
l a r g e  d i s t a n c e s  (x >> L 0) t h e  lower  l i m i t  o c c u r s  a t  such  low v e l o c i t i e s  u 1 ~ VT/V 0 t h a t  
i t  s t o p s  e v o l v i n g ,  s i n c e  t h e  p lasmons  a r e  a b s o r b e d  in  t h e  main p lasma owing t o  Landau 
damp ing .  

Analogously, we write the condition of applicability of the solutions obtained near 
the top limit in the form w 0 << u231du2/d$1. Using the expression for u 2 = v2(x)/v 0 (1.17) 
we find the restriction on the gradient of the nonuniformity: 

(l/v) d~"v/dx 'z >> ( 4 n o J W m , / A m n ' J ~ )  (no(%/n 'Av)  ~. (A. 13) 

When (A.13)  h o l d s  t h e  s l o p e  o f  t h e  t op  b o u n d a r y  o f  t h e  p l a t e a u  i s  much g r e a t e r  t h a n  i t s  
s l o p e  in  t h e  r e g i o n  v 1 < v < v 2 and t h e  c o n d i t i o n  W k >> WkT h o l d s .  

We t h a n k  V. M. K o n t o r o v i c h  f o r  h i s  c o n s t a n t  a t t e n t i 6 n  and a c t i v e  s u p p o r t  o f  t h i s  work,  
as well as N. N. Gerasimova and Yu. P. Bliokh for useful discussions of the results. 
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NUMERICAL CALCULATION OF RELATIVISTIC MULTIPLE-CAVITY SYSTEMS 

I. A. Sander, V. M. Sveshnikov, and N. G. Khavin UDC 518.5:538.3 

In the calculation of various electrophysical devices which use relativistic electron 
beams, it is necessary to consider the motion of a beam of charged particles in an external 
electromagnetic field and the self-fields (irrotational and solenoidal) of the beam. A 
multiple-cavity klystron is an example of such a device, in which the interaction between 
the relativistic electron beam and the radiation field in the cavities is significant. The 
numerical treatment of such processes is based on Maxwell's equations. 

In the present paper we describe the numerical algorithms and their computer program 
implementation in the framework of the package of applied programs ERANS [i] for the cal- 
culation of a relativistic beam of charged particles moving in extended multiple-cavity 
systems. The problem is split up into the following subproblems: i) the calculation of 
the input cavity into which an ungrouped flux of charged particles enters (oscillations 
in the cavity are excited and maintained by an external source, such as a current loop); 
2) the calculation of the flux in the drift tubes; 3) the calculation of the flux in the 
relay and output cavities; 4) the joining of the solutions of the first three problems. 

The problem is assumed to be axisymmetric and is treated in terms of the cylindrical 
coordinates r, z, 8, where the motion of the beam is mostly along the axis of symmetry z. 

Economy of calculation is the basic criterion used in choosing the numerical algo- 
rithms. In carrying through the calculations for different parts of the system, the most 
significant factors affecting the flux of charged particles for thatsPart of the system 
are taken into account. Inside the cavities the solenoidal fields E , H are taken into 
account, where the nonzero components of these fields are ErS, Ez S, and H e (the so-called 
E-field). In the drift tubes we take into account the azimuthal component of the self- 
magnetic field of the particles beam. External electric and magnetic fields act on the 
beam over the entire system, as does the irrotational field of the beam. The first five 
harmonics of the vector potential (see below) are used to calculate the solenoidal fields. 

The algorithms allow one to follow transient processes in separate parts of the sys- 
teml however, in the present paper we will be concerned mainly with steady-state, periodic 
processes. Our approach is illustrated on a problem of practical interest. 

We consider separately the algorithms for the solution of the above subproblems. The 
discussion is ordered in a convenient way for the description of the algorithms. The prob- 
lem of calculating the flux of charged particles in a resonant cavity reduces to finding 
the solution of the complete set of Maxwell's equations 

div E --p/eo; (I) 

rot E =--~oOH/Ot; (2)  

div tt  = O; (3) 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
6, pp. 10-15, November-December, 1988. Original article submitted September 25, 1987. 
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